
1-800-COURSES www.globalknowledge.com

Expert Reference Series of White Papers

Software Problems

and How Docker

Addresses Them

http://www.globalknowledge.com/

Copyright ©2016 Global Knowledge Training LLC. All rights reserved. 2

Software Problems and How Docker
Addresses Them
Jon Gallagher, Global Knowledge Instructor, Certified AWS Solutions
Architect, Certified AWS SysOps Administrator, Authorized Amazon
Instructor

Introduction
Docker is a new approach to old, but increasingly troublesome problems in the software industry, namely:

● How can we deploy ever more powerful and complex software systems that are used by tens, hundreds,

or thousands of users concurrently?

● How can we create, update, and maintain this software, while giving developers the platforms to run

the software for testing and debugging?

● How can we facilitate testing and create automated systems that detect bugs and performance

problems?

● “How can we deploy these systems, doing the system administration equivalent of changing tires on a
moving car, to help users who depend on our software to always be available?

● How can we use the lessons we learned in creating more powerful and flexible hardware to help us solve
our software problems?

That last question is an important one, because hardware went through a similar evolution to address similar

issue and, Docker was partly inspired by the hardware evolution. As hardware became more powerful, the IT

industry used that extra power to solve problems inherent in running complex systems.

The hardware was “chopped up” into virtual machine (VM) software that for all intents and purposes is a

separate machine, indistinguishable from those running on traditional machines (bare metal computers). VMs

solved the problem of making computers more efficient and cost-effective. You can buy one or more large boxes,

then divide their capacity into multiple smaller VMs to run the system. As the system grows and changes, just

change the space and power allocated to the VM.

To be as portable as possible a VM defines the operating system to be used, the number of CPUs that need to be

allocated, the amount of memory that must be assigned, and any local storage space reserved for it. When these

resources become available the VM boots up the operating system, starts any other necessary programs, then is

ready to run anything a bare metal computer might run.

On the software side, new systems are also becoming more complex and as such they are increasingly depending

on other software systems (for example, an application that depends on an image-rendering library). These

dependencies must be managed carefully, because a misconfigured system may not run, may run incorrectly, or

may have security vulnerabilities. One way to manage dependencies is to use the VM approach: just package up

the desired software, along with all the software it depends on, into a VM image. Then when the system boots

up, everything is in the correct place at the correct version level with the correct configuration.

The trouble with the VM approach for deploying software is that a server must be built with each package. The

Copyright ©2016 Global Knowledge Training LLC. All rights reserved. 3

packages end up getting bigger and more complex to justify the resources dedicated to starting and running the

VM. Also, deploying software as a VM means that all the resources for the VM itself must be allocated, making it

difficult to have multiple VMs on a developer’s laptop, for example.

Meanwhile, with the concept of minimum viable products (MVPs) and agile approaches to development, project

stakeholders and end users are demanding faster cycle times and more responsive software teams. Rather than

waiting months or years for products, users are demanding product releases in weeks, days, and maybe even

hours or minutes. Think of how often companies like Google, Twitter, Amazon, and Facebook change their

software. In these companies, there is no concept of a release being frozen, tested, and then released. The

software is continuously changing. And because there is no “frozen” version of the software, each new iteration

of the software must be packaged so it can be deployed quickly.

At the same time, the idea that a company would develop a single software system based on one programming

language, one set of libraries, for one operating system, is no longer standard practice. Now, each group working

on its own modules within a software system can choose the tools and environments that best meet the

modules’ needs. This new paradigm means that all the dependencies for any software, such as libraries, run-time

environments as well as the new code itself, must be part of the release.

Finally, developers, testers, and administrators must be able to create running versions of these software systems

to develop, test, and run in production.

This is where Docker comes in. Docker allows software systems to be packaged and maintained in images. Images

are templates that describe the software in the package, and, if needed, the software infrastructure (for

example, libraries, configuration files, etc.) needed for the software to run.

Copyright ©2016 Global Knowledge Training LLC. All rights reserved. 4

What Is Docker?
Docker is an ecosystem that creates running software systems that operate in isolation from each other on a

single operating system. In other words, each software package ends up in its own container, where it is provided

everything it needs to operate, but it cannot interfere with any other software running on the machine.

Docker divides up the process of making this happen into images that are stored in registries. When Docker

wants to run the software system, it takes the description from the image to create a Docker container.

What Is a Docker Image?
A Docker image is a template that describes everything necessary to run a software system, for example, an

Apache web server on an Ubuntu Linux distribution. In this example, Docker is instructed to start with an

Ubuntu operating system, then install Apache. This communication occurs via a Dockerfile. A Dockerfile is a text

file containing a series of commands that instruct Docker how to build a software system. The following shows a

Copyright ©2016 Global Knowledge Training LLC. All rights reserved. 5

partial example of a Dockerfile:

Start with Ubuntu image. Install it if necessary

FROM ubuntu

#Who is responsible for this Dockerfile

MAINTAINER Maintenance Guy <main_guy@email.com>

#Run the normal commands to install apache under Ubuntu

RUN apt-get update && apt-get -y install apache2 && apt-get clean

#Set the appropriate environment variables

ENV APACHE_RUN_USER www-data

ENV APACHE_RUN_GROUP www-data

ENV APACHE_LOG_DIR /var/log/apache2

Set the directories

RUN /bin/ln -sf ../sites-available/default-ssl \ /etc/apache2/sites-enabled/001-

default-ssl

RUN /bin/ln -sf ../mods-available/ssl.conf /etc/apache2/mods-enabled/

RUN /bin/ln -sf ../mods-available/ssl.load /etc/apache2/mods-enabled/

#Open the ports Apache uses to receive traffic

EXPOSE 80

EXPOSE 443

CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

This image creates an Apache server running on the Ubuntu Linux distribution on any platform we can run the

Docker software (see the Docker installation page for a list of the currently supported platforms).

What Is a Docker Registry?
Docker images are stored in registries. There are two different kinds of Docker registries: public and private.

Public registries, such as Docker hub, hold images that can build hundreds of software systems including:

● Apache or Nginx web servers

● MySQL, Cassandra, or MongoDB database servers

● Asterisk or Elasticsearch software packages

Explore the public Docker images on the hub via the search command on any page at https://hub.docker.com.

https://docs.docker.com/installation/
https://hub.docker.com/

Copyright ©2016 Global Knowledge Training LLC. All rights reserved. 6

Private registries hold Docker images that companies want to have complete control over. Companies and other

organizations can host their own registries. In addition, Docker can host private registries for organizations that

need only a few images stored, or don’t want to maintain the registry themselves. (Note: this latter arrangement

is very similar to how Github.com, the software control site, manages its hub.)

The Dockerfile shown in the previous section creates an image that causes an Apache server to run on Ubuntu,

and it starts by getting an Ubuntu image. If that image is not on the local machine, then the Docker software

asks https://hub.docker.com (or a specified registry) to provide the Ubuntu image. Thus, another way to think of

a registry is a place where images wait to be invoked.

The newly created image (the end result of the Dockerfile in the previous section) might be stored in a repository

on https://hub.docker.com as well. If the repository is called “fake-name-company”, then the image might be

stored as fake-name-company/apache.

What Is a Docker Container?
So once a software system described by a Docker image has been created, how is that software run? First, install

Docker on every machine on which the software will be run. Docker can be installed directly onto most Linux

distributions, and onto Windows or Mac OSX systems. The systems Docker supports directly are listed at

https://docs.docker.com/installation/.

Next, tell the Docker software to read the image, then to construct a container that runs the software as

described. A container is a section of a machine’s operating system that is configured to be the run-time

environment for a software system. There can be many containers running at once, each sharing the resources of

the operating system. Because the containers are isolated from each other, there is no problem with, for

example, different versions of the same software using conflicting libraries.

In the case of the Apache system created in the previous sections, it can now run on any computer that has

Docker loaded by issuing this command:

docker run fake-name-company/apache

Now Apache is running in a container.

How Should Docker Be Used?
As shown in the examples, Docker is driven by text commands, either issued on a command line or collected in a

text file. This means Docker can integrate with any system that can emit text commands. With the popularity of

DevOps increasing, more tools are available to integrate with Docker.

Docker in the Development Phase
Docker makes it easy to give developers private environments in which they develop their software. Docker also

makes it easy to automate (and thus come closer to ensuring) that developers thoroughly test their code. For

example, Git, the distributed version control system, has the concept of hooks which are scripts that are invoked

when designated actions occur, such as committing code to a repository. When a developer checks or commits

new code, Git can invoke Docker to start up a new container with which to test that code.

Docker in the Quality Assurance Phase
Docker can be used to create immutable servers, which are software systems that are dedicated to one purpose

and are never changed once they are released from development. Updating or changing anything about an

immutable server means replacing the server completely.

https://hub.docker.com/
https://hub.docker.com/
https://docs.docker.com/installation/

Copyright ©2016 Global Knowledge Training LLC. All rights reserved. 7

Testing immutable servers is much less complicated with Docker because there is nothing for the QA department

to tweak on its own. The instructions for setting up and running the new software is embedded in the system;

just run the docker command and test. If the software breaks, send it back to the development team, who can

quickly recreate the bug.

Beyond just hunting bugs, it is easy to set up a container that runs a previous version of software, and one that

runs the most current version, and to test them on the same machine. Turnaround time for activities like

debugging, testing, and A/B testing is minimized.

Docker in the Production Phase
The advantage of immutable servers is that there is nothing to configure, change, and possibly break, because

every component is hard-coded into the system. The disadvantage of immutable servers is that if these systems

have to be deployed on individual boxes, or even on VMs, the cost and overhead of updates and changes can

become onerous.

Using Docker means that an immutable server is just another process running on a box. There is no cost in taking

down a container and substituting another, and the only time costs increase is when another physical box, or VM,

needs to be added to provide more space for Docker containers. In production, it becomes easy to do things like

blue-green deployment, where the existing production network (by default, this is blue), is slowly replaced by

new software or a new network (green). As the transition occurs, the production administrators can monitor

performance, faults, and hopefully decrease customer complaints. If any indicator signals trouble with the new

software, blue floods back into the green areas. Docker allows this to happen quickly because the time required

to read a Docker image and start a Docker container is at most seconds, versus the minutes and even tens of

minutes required to start a new VM or physical machine.

The Future of Docker
Docker is a powerful engine that can create both small systems that support individual development

environments, and complex systems run by large corporations.

Docker and Microservices
Docker is an essential part of the trend toward microservices, where monolithic software systems are being

broken up into smaller cooperating services. An example of evolving a system into microservices might be a

software system where the login action is broken out from the main body of the program. Because it can be

called by many programs, it makes sense to have the login be provided as a separate service that can be tested

and certified as secure.

Companies are examining their software architectures to see what other parts can be broken out as services.

Independent services can then scale on their own, be updated independently from other services, and allow for

frequent software release cycles. See http://microservices.io/ for more information on microservices.

Docker Orchestration
As Docker is called on to work with larger systems, and particularly in the cloud, the complexity of coordinating

where containers are running and why increases exponentially. In response, many companies have developed

Docker “orchestration” systems to manage this complexity. Because this is a new field with new systems, the rate

of change among the offerings is at least monthly, but often even weekly and daily. The following are some of

the current Docker orchestration systems:

Kubernetes by Google
Kubernetes manages a cluster of nodes that run containerized applications. This means that Kubernetes

http://microservices.io/

Copyright ©2016 Global Knowledge Training LLC. All rights reserved. 8

can take multiple computers and treat their combined capacity as one large computer on which Docker

containers can run. Kubernetes was developed by Google and is used by Google to manage its own

infrastructure. Currently, Kubernetes is supported on Google Compute Engine, Rackspace, Microsoft Azure,

and vSphere environments.

Elastic Container Service
Like Kubernetes, Elastic Container Service (ECS) manages a cluster of compute instances as a single

resource to locate Docker containers. ECS is a free service integrated with the Amazon Web Services (AWS)

API infrastructure.

Rancher (http://rancher.com/)
Rancher creates and manages a purpose-built environment for running Docker. Rancher takes computing

resources and loads its own software system (RancherOS) to run Docker. Rancher creates a networked

cluster environment that provides load balancing, service discovery, and cross-host networking.

Docker
Docker itself provides the following orchestration tools:

● Machine. Docker Machine manages the configuration of Docker software on individual computers,

or groups of computers (called swarms in Docker).

● Swarm. Docker Swarm pulls individual computer resources into a single integrated pool of

resources that can run Docker containers.

● Compose. Docker Compose allows users to take small multiple Docker containers that would

support individual services, and deploy those services in a microservice architecture with a single

file.

Conclusion
Using Docker allows organizations to create easily deployable software systems that can run on individual or
clustered computer systems, on a wide variety of platforms. Docker is platform-agnostic; it can run on bare metal,
VMs, or purpose-built systems in data centers, or private, hybrid, or public clouds. Organizations are leveraging
Docker to become more agile, responsive, and leaner as they compete in an ever more challenging software
environment.

Learn More

Learn more about how you can improve productivity, enhance efficiency, and sharpen your competitive edge

through training.

AWS Training

Red Hat® Training

VMware Training

Visit www.globalknowledge.com or call 1-800-COURSES (1-800-268-7737) to speak with a Global Knowledge
training advisor.

http://rancher.com/
http://www.globalknowledge.com/training/category.asp?pageid=9&catid=555&country=United+States
http://www.globalknowledge.com/training/category.asp?pageid=9&catid=400&country=United+States
http://www.globalknowledge.com/training/category.asp?pageid=9&catid=513&country=United+States

Copyright ©2016 Global Knowledge Training LLC. All rights reserved. 9

About the Author

Jon M. Gallagher is a Global Knowledge instructor who has decades of experience creating and running large-

scale software systems for the web and for enterprises. He has been using Amazon Web Services since its

introduction in 2006.

